ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 276 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

AESOP Institute

Closeminded Science

EarthTech

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

The Orion Proj.

Panacea-BOCAF

QVac_Eng

RexResearch

Science Hobbyist

Tom Bearden's Page

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
Alternative Energy News
E-Cat World
NexusNewsfeed ZPE
FringeEnergy News
NE Discussion Groups
Energetic Forum
Energy21 YT Channel
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine
Find Jobs

Strontium
Posted on Monday, August 02, 2004 @ 12:19:01 GMT by vlad

Science Jones Beene writes: Strontium (Sr) is a little appreciated metal which is beginning to look promising for use in experiments where "excess heat" is generated in high electric fields. It may be especially adaptable to LENR effects, such as accelerated decay, because of its 'overlap' with the element Yttrium and the highly deformed nucleus of some of its isotopes and isomers.


Sr also has anisotropic magnetic, thermomagnetic and electromagnetic properties which may allow ZPF interaction, especially in ferrite form. All of these possibilities should be explored, should Sr turn out to be implicated in OU phenomena. I have at least a dozen studies from the past few years which claim this kind of heat anomaly using strontium (and other related alkalis), some from prestigious labs, some from independent inventors (often more reliable than the big labs).

Sr is alkaline earth metal, so the oxide is a strong base. It is a Millsí catalyst, notably, and is surrounded by other Millsí catalysts on the periodic table. Mills is one of the major claimants, but there is evidence that Strontium works even better without the presence of hydrogen. It has sixteen unstable isotopes, and many more isomers, which is fairly indicative of its nuclear fragility. 90-Sr with a half-life of 29 years is the best available long-lived beta emitter, and is used in SNAP space-power devices. Some Sr isotopes have deformed nuclei, one has the greatest deformity ever documented. This may be a key clue to understanding its nuclear fragility.

But a neutrino-induced 88Sr --> 88Y --> 88Sr is the reaction of present interest - a potential circular reaction which would hypothetically yield an amazing 4 MeV with a hundred + day half-life, and this previously unknown reaction would be worthy of investigation, if and when some degree of overunity is demonstrated with Sr.

At the end of this document are a reference to other physical properties of Sr and Sr ferrites. Now for a possible LENR mechanism, involving neutrino oscillation.

Neutrons can break down, decay and transform into protons in many ways, either in a large nucleus or free, including a very rare interaction with a neutrino. Recently, evidence has been building relating to the admittedly remote possibility that neutrino *oscillation* is magnified in a high gradient electric field which then creates an enhanced cross-section for nuclear interaction (two step process).

"Our findings confirm that neutrinos have mass and that they change state from one type of neutrino to another," said Henry Sobel, who is principal investigator of the Super-Kamiokande Collaboration ...."

Free neutrons emit electrons and anti-neutrinos to become protons. If an antineutrino strikes a proton, the proton can emit a positron and a neutrino to become a neutron. If a neutrino (especially one undergoing "oscillation" gets close enough to a neutron, the neutron can emit an electron and an antineutrino to become a proton. Neutrinos and anti-neutrinos differ only in lepton number and are commonly referred to together as "neutrinos." Recently, as mentioned, evidence has been building relating to the admittedly remote possibility that neutrino oscillation is magnified in an intense electric field which then creates an enhanced cross-section for nuclear interaction in a two step process with the result that the target nucleus becomes unstable..

There exist much terrestrial evidence for the proposition that this has occurred continually over time in our ionosphere, subject to reinterpretation of older studies of isotope anomalies. When such reactions occur, spin and lepton number must be conserved. When a proton emits a positron, as happens when 88Y reverts to 88Sr, there would be a discrepancy in the sum of their spins and lepton numbers without the neutrino and its presence near any charged nucleus may mean an enhanced absorption cross section due to an "oscillation-in-progress." A side effect is that in some elements, neutrino interaction can appear auto-catalytic, in that it appears to induce a partial chain reaction. It will be emphasized that without the oscillation itself, the cross-section for neutrino interaction is trillions of times too improbable to use in any small device as an energy resource.

This bears repeating, as the tendency for anyone who has not been exposed to this idea is to write off neutrino interaction as too improbable to even consider. Everyone agrees with that assessment - as far as it goes. However, the recent large budget neutrino studies such as 'Super-K' are finding evidence that neutrinos will interact more readily when they undergo a transition from a massless state, traveling at light speed, into a slightly slower speed with small mass. This is my interpretation of the results, as there is not enough energy in the universe to propel any neutrino 'with mass' to lightspeed, yet we are absolutely certain that neutrinos travel at c. most of the time: the evidence is as follows (excuse the digression).

Very large stars end their lives in a cataclysmic explosion called a supernova like one nearly twenty years ago in the Large Magellanic Cloud, about 160,000 light years away. Photographed in 1987, and named 1987A, it was the first supernova visible to the naked eye since the seventeenth century. Astrophysicists have predicted that such a supernova explosion would produce a sharp pulse of neutrinos, as they carry nearly all of the energy of the explosion. But do the elusive uncharged particles move at the speed of light or instead just near the speed?

In 1987 there were two big detectors were up and running - one Kamiokande was the predecessor to Super- K. What did they discover? Well, the two detectors both observed both a very significant increase in neutrino counts, the first ever observation of neutrinos produced by a supernova. Moreover, the neutrinos arrived in a pulse about three hours before the visible light from the supernova! This is just as astrophysicists had predicted based on neutrinos traveling at lightspeed as they would escape slightly ahead of the visible photonic radiation which was slightly slowed by dust, and arrive slightly ahead, not slowing an iota - even after 160,000 years.

The bottom line is that neutrinos hardly ever interact with normal matter unless they are undergoing a transition from the massless state. This may be enhance in an electric field and it may be subject to the neutrinos own resonance based on its mass. A neutrino of one suspected value: 0.06 ev rest mass/energy f = 0.05/h = 80 terahz: Lambda = c/f ~ = 25 microns/ Indicating that SrFe particle grain sizes around 25 microns would help, if that figure of rest mass is true. I think it could be much higher.

Fifteen years ago, Fleischmann and Pons took some palladium and forced deuterium into it by electrolysis, creating an environment where electrons can not function in their natural fashion and permanent virtual ions are present. IOW a high intensity self-field. No one is sure of the exact details of this mechanism and whether or not it involved neutrinos. When SrFe is subject to electrical current, especially where waveforms can cause resonant ionic movement, something similar may happen. This is not to say that cold fusion involves a neutrino interaction, necessarily, as a precursor, but only to show that there is some similarity in the possible underlying mechanisms, and the prospect of neutrino interaction has yet to be ruled out.

Side note (for the benefit of any T-holics out there): a CF cell, or any Strontium decay device, placed inside an operating Tesla coil should show much higher activity IF neutrino interactions are indeed involved... ;-)

Jones

Some Physical Properties of Strontium

Strontium is 5 times more common than copper but is seldom mentioned except in the negative connotation of strontium-90, one of the more deadly isotopes found in nuclear fission. It is deadly because strontium acts just like calcium in the human body, and is easily absorbed.

Sr softer than calcium and decomposes in water more vigorously. The metal form should be kept under kerosene to prevent oxidation. Freshly cut strontium has a silvery appearance, but rapidly turns a yellowish color with the formation of the oxide. The finely divided metal ignites spontaneously in air. Volatile strontium salts impart a beautiful crimson color to flames, and these salts are used in pyrotechnics and in the production of flares. Natural strontium is a mixture of four stable isotopes.

Sixteen other unstable isotopes are known to exist, which is fairly indicative of its nuclear fragility. Of greatest importance is 90-Sr with a half-life of 29 years. It is a product of nuclear fallout and presents a health problem. This isotope is one of the best long-lived high-energy beta emitters known, and is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use in space vehicles, remote weather stations, navigational buoys, etc., and where a lightweight, long-lived, nuclear-electric power source is needed.

Uses: The major use for strontium at present is in producing glass for color television picture tubes and fireworks. It has also found use in producing ferrite magnets and in refining zinc. Strontium titanate is an interesting optical material as it has an extremely high refractive index and an optical dispersion greater than that of diamond. It has been used as a gemstone, but is very soft. It does not occur naturally.

Cost: Strontium metal (98% pure) in January 1990 cost about $5/oz. This is a function of demand, primarily. In large quantities, due to its ubiquity, it has a potential cost of only about $5/kilogram.

Ferrites: Ferrites are ferrimagnetic oxides with dielectric & magnetic properties that are useful for high frequency induction, such as RF and microwave applications. Iron based ferrites have the general formula MO-Fe2O3 where M is a divalent ion such as Sr. Ferrites are related to Ferrogarnets or rare earth iron garnets have with a fairly complex structure that often includes yttria.

Electrostrictive ceramics are relaxor ferroelectric ceramics, which can include Sr ferrites. Strain varies quadratically with electric field for an electrostrictor rather than linearly as in a piezoelectric ceramics. Relaxors exhibit very high dielectric constants ( K > 20,000), diffuse ferroelectric-to-paraelectric phase transitions, and electrostrictive strain vs. electric field behavior. Electrostrictors excel at high frequencies and very low driving fields and display little or no hysteretic loss even at very high frequencies of operation due to the lack of spontaneous polarization.

For transducer applications, electrostrictors must operate under a DC bias field to induce piezoelectric behavior. Operation under bias is characterized by field dependent piezoelectric and electromechanical coupling coefficients piezoelectric materials produce force or deformation when a load is an electrical charge applied. These properties might make piezoelectric materials useful for heating (especially if excess heat is found).

In short, strontium-based ferrites fit into any and all of these categories. If the source of strontium's energy anomaly is real, and is not nuclear, it is surely related by the anisotropy in these electromagnetic characteristic being able to cohere ZPE.

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 3
Votes: 2


Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"Strontium" | Login/Create an Account | 1 comment | Search Discussion
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

Transmutation of strontium to molybdenum experiment (Score: 1)
by vlad on Wednesday, August 04, 2004 @ 22:57:43 GMT
(User Info | Send a Message) http://www.zpenergy.com
In the hydrino yahoo group "helicalgeometry" writes: Mike,

Thanks for mentioning this experiment. I was going to bring it up myself.

"An elegant experiment by Iwamura at Mitsubishi Heavy Industries showed unequivocal transmutation of strontium to molybdnum by diffusing deuterium gas through a thin film. The effect has been confirmed at Japanese and Italian labs....Iwamura also transmuted cesium to praseodymium."

The beauty of this experiment is that it's virtually impossible to make a case that there isn't a novel nuclear reaction occurring here. The praseodymium couldn't have come from anywhere else.

"These transmutation reactions have now been duplicated by Osaka University scientists. They have repeated the transmutations several times. The Osaka praseodymium product has been verified by neutron activation analysis (NAA) at the Japan Atomic Energy Institute."

"The Mitsubishi scientists have further confirmed the identification of the praseodymium product, using a number of independent diagnostic techniques. They have shown that the transmutation occurs both with chemically deposited and ion-implanted cesium atoms. Surface profiling studies have been carried out and have located where the reaction occurs by measured the depth distribution of cesium loss and praseodymium creation. The results show that the nuclear reaction is a surface or near surface reaction on the substrate metal. Precise chemical analyses of the bulk metal substrate have shown that the praseodymium nuclear product is much too plentiful to be due to impurity migration from the bulk."

"The Osaka and Mitsubishi studies provide solid evidence that deuteron or alpha-addition nuclear reactions can be made to reproducibly occur on solid metal at a temperature below that of boiling water."

http://blake.montclair.edu/~kowalskil/cf/105iwamura2.html

"The group hypothesizes that there is a gain by the initial species of two alpha particles (two He-4) or a Be-8 nucleus! The time-history of the growth of the new species matched the decline of the old species. Contamination has been completely ruled out by exhaustive testing. In the case of strontium, the reaction is: Sr-88 goes to Mo-96. As detected by SIMS analysis, the molybdenum isotope produced is Mo-96, highly anomalous with no possibility of being naturally-occurring Mo."

http://www.infinite-energy.com/iemagazine/issue44/iccf9.html

Ok skeptics, this is the acid test!

Anybody care to deny that this one is real?

Cheers,
David



Original paper by Iwamura:
http://www.lenr-canr.org/acrobat/IwamuraYelementalaa.pdf

Replication by Hagshiyama (Osaka U)
http://www.lenr-canr.org/acrobat/Higashiyamreplicatio.pdf



 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.