ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 256 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events
  • (June 9, 2021 - June 11, 2021) ICCF-23 online

  • Hot Links
    Aetherometry

    American Antigravity

    AESOP Institute

    Closeminded Science

    EarthTech

    Innoplaza

    Integrity Research Institute

    New Energy Movement

    New Energy Times

    The Orion Proj.

    Panacea-BOCAF

    QVac_Eng

    RexResearch

    Science Hobbyist

    Tom Bearden's Page

    USPTO

    Want to Know

    Other Info-Sources
    NE News Sites
    AER_Network
    Alternative Energy News
    E-Cat World
    NexusNewsfeed ZPE
    FringeEnergy News
    NE Discussion Groups
    Energetic Forum
    Energy21 YT Channel
    EMediaPress
    Energy Science Forum
    Free_Energy FB Group
    The KeelyNet Blog
    OverUnity
    Sarfatti_Physics
    Tesla Science Foundation (FB)
    Vortex (old Interact)
    Magazine Sites
    Electrifying Times (FB)
    ExtraOrdinary Technology
    IE Magazine
    New Energy Times

    Interesting Links

    Click Here for the DISCLOSURE PROJECT
    SciTech Daily Review
    NEXUS Magazine
    Find Jobs

    New study increases concerns about climate model reliability
    Posted on Saturday, December 15, 2007 @ 16:55:11 MST by vlad

    Science A new study comparing the composite output of 22 leading global climate models with actual climate data finds that the models do an unsatisfactory job of mimicking climate change in key portions of the atmosphere.

    Source: http://www.physorg.com/news116592109.html

    New model revises estimates of terrestrial carbon dioxide uptake

    Researchers at the University of Illinois have developed a new model of global carbon and nitrogen cycling that will fundamentally transform the understanding of how plants and soils interact with a changing atmosphere and climate.




    The new model takes into account the role of nitrogen dynamics in influencing the response of terrestrial ecosystems to climate change and rising atmospheric carbon dioxide.

    Current models used in the assessment reports of the Intergovernmental Panel on Climate Change do not account for nitrogen processing, and probably exaggerate the terrestrial ecosystem’s potential to slow atmospheric carbon dioxide rise, the researchers say. They will present their findings this week at the annual meeting of the American Geophysical Uni0n in San Francisco.

    In the face of global climate change, world leaders are in need of models that can reliably predict how land use and other human activities affect atmospheric carbon dioxide levels. Deforestation and the burning of coal and oil increase atmospheric carbon dioxide and contribute to global warming.

    Growing plants take carbon dioxide from the air and store it as carbon in their tissues. This means that plant growth – especially that of trees – can help reduce the effects of rising carbon dioxide levels, which contribute to global warming.

    Scientists have struggled for decades to build computer models that accurately predict how plants and soils will respond to rising carbon dioxide levels in the atmosphere.

    In the 1990s, researchers reported that crop plants such as cotton or wheat are more productive when exposed to higher carbon dioxide levels. This “fertilization effect” increases CO2 uptake and was hailed by some as evidence that Earth’s forests also would take up more carbon dioxide as atmospheric levels increased.

    But models of the carbon cycle have failed to take into account how nitrogen availability influences this equation on the global scale, said Atul Jain, a U. of I. professor of atmospheric sciences and principal investigator on the development of the new model.

    Nitrogen is vital to carbon dioxide uptake in plants, and if the available nitrogen runs out, the plants won’t be able to make use of the added CO2, Jain said. In an agricultural landscape, nitrogen may be added as needed, he said, but forests have limited amounts of nitrogen in their soils.

    The integrated science assessment model, originally developed by Jain, now has been expanded to take into account the net carbon impact of human activities and the role of rising atmospheric temperatures on the process of carbon uptake.

    “Everything is integrated, not only the nitrogen, carbon and climate, but also we looked at land cover and land use changes,” Jain said. “A lot of deforestation and also aforestation and reforestation are going on, and that has a direct effect on the carbon dioxide release or absorption.”

    The model accounts for different soil and vegetation types, the impact of climate and the inadvertent nitrogen deposition that results from fossil fuel and biomass burning.

    Interestingly, warming temperatures in response to rising carbon dioxide levels could make more nitrogen available, said Xiaojuan Yang, a doctoral student in Jain’s lab. This factor must also be weighed in any calculation of net carbon dioxide load, she said.

    “Previous modeling studies show that due to warming, the soil releases more carbon dioxide through increased decomposition,” she said. “But they are not considering the nitrogen effect. When the soil is releasing more CO2, at the same time more nitrogen is mineralized. This means that more nitrogen becomes available for plants to use.”

    Increased nitrogen availability allows plants to uptake more carbon dioxide, a factor that mitigates, somewhat, the added burden of carbon dioxide in the atmosphere.

    Even so, Jain said, the failure to look at the role of nitrogen in the terrestrial landscape means that countries may be overestimating the amount of carbon dioxide-uptake their forests provide.

    Source: University of Illinois at Urbana-Champaign
    Via: http://www.physorg.com/news116592804.html

     
    Login
    Nickname

    Password

    Security Code: Security Code
    Type Security Code

    Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

    Related Links
    · More about Science
    · News by vlad


    Most read story about Science:
    100 miles on 4 ounces of water?


    Article Rating
    Average Score: 0
    Votes: 0

    Please take a second and vote for this article:

    Excellent
    Very Good
    Good
    Regular
    Bad


    Options

     Printer Friendly Printer Friendly


    "New study increases concerns about climate model reliability" | Login/Create an Account | 0 comments
    The comments are owned by the poster. We aren't responsible for their content.

    No Comments Allowed for Anonymous, please register

     

    All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
    Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

    PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.