Review of Experimental Concepts for Studying the Quantum Vacuum Field
Date: Saturday, May 27, 2006 @ 13:00:35 MST
Topic: Science


by E. W. Davis, V. L. Teofilo, B. Haisch, H. E. Puthoff, L. J. Nickisch, A. Rueda, and D. C. Cole

Abstract. We review concepts that provide an experimental framework for exploring the possibility and limitations of accessing energy from the space vacuum environment. Quantum electrodynamics (QED) and stochastic electrodynamics (SED) are the theoretical approaches guiding this experimental investigation. This investigation explores the question of whether the quantum vacuum field contains useful energy that can be exploited for applications under the action of a catalyst, or cavity structure, so that energy conservation is not violated. This is similar to the same technical problem at about the same level of technology as that faced by early nuclear energy pioneers who searched for, and successfully discovered, the unique material structure that caused the release of nuclear energy via the neutron chain reaction.


...

CAVEAT EMPTOR!

There has been a large amount of popular semi-technical literature published over the last 25 years covering the topic of extracting energy from the quantum vacuum field. The literature is mostly composed of self-published books or pamphlets found in bookstores or on the internet, and there are also professional society conference papers that are largely not peer-reviewed. Unfortunately, much of this literature is published within the context of free energy and antigravity devices with claims that the vacuum ZPE is the source that drives free energy devices or powers an antigravity craft, or powers gravity/mass modification or repulsive gravitational force beam devices, etc. A number of these claims have been evaluated over the years by credentialed scientists and were falsified. Much of this literature is self-serving marketing propaganda, and the language describing the physics or engineering principles for these claims is often couched in what we call “technobabble.” Credentialed scientists interested in seriously pursuing a laboratory investigation of the vacuum ZPF should be forewarned that many of the claims being made in the non-peer-reviewed literature are fraught with pathological science, fraud, misinformation, disinformation, and spurious physics. This is the reason why the present authors were very selective about which ZPE extraction approaches to consider for our research program.

CONCLUSION

We reviewed the physical nature of the quantum vacuum field, and described its spectral characteristics and latent energy content. We are interested in concepts that provide an experimental framework for exploring the possibility and limitations of accessing energy from the space vacuum environment. The theoretical approaches guiding this experimental investigation are based on the QED and SED models of the ZPF. The purpose of our investigation is to explore the question of whether the quantum vacuum field contains useful energy that can be exploited for space power and propulsion applications under the action of a catalyst, or cavity structure, so that energy conservation is not violated. We identified six experiments that have the potential to extract useful energy from the vacuum. One of these, Forward’s Vacuum-Fluctuation Battery, was shown to be unsuitable for completing an engine cycle for pumping energy from the vacuum. The efficacy of the Mead and Nachamkin patent device has not yet been evaluated in the lab. However, four additional experimental concepts are potentially exploitable and we have selected those to pursue in a carefully guided theoretical and laboratory research program. The estimated power output from three of these concepts could under optimum conditions range from Watts to kiloWatts. But it should be stressed that there potentially is a real theoretical and experimental challenge in modeling and predicting noise sources, edge and surface effects, etc. within the different experimental approaches, so that experimental results are unambiguously interpretable. If successful, however, it is anticipated that these experiments would lead to a revolution in the way we generate electrical power for commercial and space applications.

Source: http://www.calphysics.org/articles/Davis_STAIF06.pdf

(Also available in our Downloads/ZPE_related section)






This article comes from ZPEnergy.com
http://www.zpenergy.com

The URL for this story is:
http://www.zpenergy.com/modules.php?name=News&file=article&sid=1914