ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 186 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events
  • (August 7, 2024 - August 11, 2024) 2024 ExtraOrdinary Technology Conference

  • Hot Links
    Aetherometry

    American Antigravity

    Closeminded Science

    EarthTech

    ECW E-Cat World

    Innoplaza

    Integrity Research Institute

    New Energy Movement

    New Energy Times

    Panacea-BOCAF

    RexResearch

    Science Hobbyist

    T. Bearden Mirror Site

    USPTO

    Want to Know

    Other Info-Sources
    NE News Sites
    AER_Network
    E-Cat World
    NexusNewsfeed ZPE
    NE Discussion Groups
    Energetic Forum
    EMediaPress
    Energy Science Forum
    Free_Energy FB Group
    The KeelyNet Blog
    OverUnity Research
    Sarfatti_Physics
    Tesla Science Foundation (FB)
    Vortex (old Interact)
    Magazine Sites
    Electrifying Times (FB)
    ExtraOrdinary Technology
    IE Magazine
    New Energy Times

    Interesting Links

    Click Here for the DISCLOSURE PROJECT
    SciTech Daily Review
    NEXUS Magazine

    Pinpoint microwave resolution could lead to wireless power transfer
    Posted on Saturday, April 26, 2008 @ 19:48:37 GMT by vlad

    Science An experimental near-field plate is a patterned grating like surface that can focus electromagnetic waves to subwavelength resolutions. Photo by Cyan James

    Researchers at the University of Michigan have focused microwaves to specks 20 times smaller than their wavelength and five times smaller than other devices have achieved.

    This development could allow advances such as laptop computers that recharge without plugging in, higher-resolution microscopes for observing molecules, and CDs that can store vastly more data.

    A paper on the research will be published in the April 25 edition of Science. Authors include Anthony Grbic, assistant professor of electrical engineering and computer science; Roberto Merlin, professor of physics as well as electrical engineering and computer science; and Lei Jiang, a graduate student in physics. The work is an experimental realization of a concept and device proposed earlier in two theoretical papers.


    "This is the highest resolution to date achieved at microwave frequencies," Grbic said. "It opens up a whole range of applications, including wireless power transfer, microscopy and beam-shaping devices to focus the radiation. If we can push this to light frequencies, and there are no reasons why this couldn't be done, it will have applications in lithography and data storage."

    Microwaves have a lower frequency and longer wavelength than visible light. Lithography is used in etching integrated circuits for computer processors and memory.

    Focusing light waves and other electromagnetic radiation to points smaller than their wavelength was long thought to be impossible. But by manipulating these waves before they get too far away from their source, scientists and engineers in recent years have been able to break this so-called diffraction limit.

    Grbic and his colleagues focused 30-cm microwaves at 1GHz frequency to points approximately 1.5 cm in size.

    They achieved this by aiming the radiation through specially patterned, slotted panels placed within the source's electromagnetic near field. The electromagnetic near field is the region around an antenna or radiation source within one wavelength of the emitted radiation. In this case, the near field was within 30 cm of the source.

    The slotted panels, called near-field plates, work as alternatives to lenses. Other methods of focusing beneath the diffraction limit use metamaterials, which are special man-made, three-dimensional lenses that are relatively expensive to produce.

    The plates that Grbic, Merlin and Jiang produced are made by single-layer processing. They are easier to make and less expensive than metamaterials, they say.

    "A big advantage of our approach is that the underlying focusing concept can be applied to a wide range of operating frequencies," Merlin said. "Much as the well-known Fresnel zone plates can be used for conventional (diffraction-limited) focusing of microwaves and X-rays, the near-field plates can do the same with super resolution."

    Their study is called "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces."

    Source: University of Michigan
    Via: http://www.physorg.com/news128350265.html

     
    Login
    Nickname

    Password

    Security Code: Security Code
    Type Security Code

    Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

    Related Links
    · More about Science
    · News by vlad


    Most read story about Science:
    100 miles on 4 ounces of water?


    Article Rating
    Average Score: 0
    Votes: 0

    Please take a second and vote for this article:

    Excellent
    Very Good
    Good
    Regular
    Bad


    Options

     Printer Friendly Printer Friendly


    "Pinpoint microwave resolution could lead to wireless power transfer" | Login/Create an Account | 2 comments | Search Discussion
    The comments are owned by the poster. We aren't responsible for their content.

    No Comments Allowed for Anonymous, please register

    Re: Pinpoint microwave resolution could lead to wireless power transfer (Score: 1)
    by ElectroDynaCat on Sunday, April 27, 2008 @ 10:44:50 GMT
    (User Info | Send a Message)
    Forget remote battery charging, if this technology works as well as claimed, it's certain that it could be used in the production of energy from thermonuclear fusion.

    One of the big problems plasma physicists have with achieving Lawson criterion is raising the energy density high enough to start fusion.

    This is pretty good news!




     

    All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
    Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

    PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.