ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 169 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events
  • (August 7, 2024 - August 11, 2024) 2024 ExtraOrdinary Technology Conference

  • Hot Links
    Aetherometry

    American Antigravity

    Closeminded Science

    EarthTech

    ECW E-Cat World

    Innoplaza

    Integrity Research Institute

    New Energy Movement

    New Energy Times

    Panacea-BOCAF

    RexResearch

    Science Hobbyist

    T. Bearden Mirror Site

    USPTO

    Want to Know

    Other Info-Sources
    NE News Sites
    AER_Network
    E-Cat World
    NexusNewsfeed ZPE
    NE Discussion Groups
    Energetic Forum
    EMediaPress
    Energy Science Forum
    Free_Energy FB Group
    The KeelyNet Blog
    OverUnity Research
    Sarfatti_Physics
    Tesla Science Foundation (FB)
    Vortex (old Interact)
    Magazine Sites
    Electrifying Times (FB)
    ExtraOrdinary Technology
    IE Magazine
    New Energy Times

    Interesting Links

    Click Here for the DISCLOSURE PROJECT
    SciTech Daily Review
    NEXUS Magazine

    More Solid than Solid: A Potential Hydrogen-Storage Compound
    Posted on Wednesday, April 02, 2008 @ 22:04:21 GMT by vlad

    Science MOF-74 resembles a series of tightly packed straws comprised mostly of carbon atoms (white balls) with columns of zinc ions (blue balls) running down the walls. Heavy hydrogen molecules (green balls) adsorbed in MOF-74 pack into the tubes more densely than they would in solid form. Credit: NIST

    One of the key engineering challenges to building a clean, efficient, hydrogen-powered car is how to design the fuel tank. Storing enough raw hydrogen for a reasonable driving range would require either impractically high pressures for gaseous hydrogen or extremely low temperatures for liquid hydrogen. In a new paper researchers at the National Institute of Standards and Technology’s Center for Neutron Research have demonstrated that a novel class of materials could enable a practical hydrogen fuel tank.


    A research team from NIST, the University of Maryland and the California Institute of Technology studied metal-organic frameworks (MOFs). One of several classes of materials that can bind and release hydrogen under the right conditions, they have some distinct advantages over competitors. In principle they could be engineered so that refueling is as easy as pumping gas at a service station is today, and MOFs don’t require the high temperatures (110 to 500 C) some other materials need to release hydrogen.

    In particular, the team examined MOF-74, a porous crystalline powder developed at the University of California at Los Angeles. MOF-74 resembles a series of tightly packed straws comprised of mostly carbon atoms with columns of zinc ions running down the inside walls. A gram of the stuff has about the same surface area as two basketball courts.

    The researchers used neutron scattering and gas adsorption techniques to determine that at 77 K (-196 C), MOF-74 can adsorb more hydrogen than any unpressurized framework structure studied to date—packing the molecules in more densely than they would be if frozen in a block...

    More: http://www.physorg.com/news126355316.html
    Source: National Institute of Standards and Technology

     
    Login
    Nickname

    Password

    Security Code: Security Code
    Type Security Code

    Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

    Related Links
    · More about Science
    · News by vlad


    Most read story about Science:
    100 miles on 4 ounces of water?


    Article Rating
    Average Score: 0
    Votes: 0

    Please take a second and vote for this article:

    Excellent
    Very Good
    Good
    Regular
    Bad


    Options

     Printer Friendly Printer Friendly


    "More Solid than Solid: A Potential Hydrogen-Storage Compound" | Login/Create an Account | 1 comment | Search Discussion
    The comments are owned by the poster. We aren't responsible for their content.

    No Comments Allowed for Anonymous, please register

    Hydrogen storage in nanoparticles works (Score: 1)
    by vlad on Sunday, April 13, 2008 @ 17:30:47 GMT
    (User Info | Send a Message) http://www.zpenergy.com
    Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles of the metal hydride sodium alanate make the favourable extraction and storage of hydrogen possible.

    Hydrogen is considered to be a clean storage and transport medium for energy. Therefore many future scenarios are based on the storage and transport of hydrogen. Various obstacles need to be overcome before this so-called hydrogen economy can be used on a large scale. One of these is the storage of hydrogen.

    A highly-promising method for storing hydrogen is its absorption in a metal hydride. A disadvantage of this method is that hydrogen uptake and release rates are low for metal hydrides. Reducing the particle size of the metal hydride to a nanometre scale is a possible solution to this problem.

    Baldé demonstrated that 30 nanometre particles of sodium alanate store hydrogen in a highly efficient manner. With the addition of a titanium catalyst, a further reduction in the particle size to 20 nanometres is possible and this leads to an even more efficient storage of hydrogen.

    The deactivation process of the titanium catalyst was also studied because this inhibits the uptake and release rate of hydrogen. Structural characteristics that exert an influence on the catalyst's activity were found. This knowledge can be used to develop an improved catalyst.

    Source: NWO
    Via: http://www.physorg.com/news126181749.html



     

    All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
    Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

    PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.