ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 156 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Chava Energy

Closeminded Science

EarthTech

Energy Science

Energy21

Innoplaza

Integrity Research Institute

Interstellar Technologies

JLN Labs

KeelyNet

New Energy Movement

New Energy Times

The Orion Proj.

Panacea-BOCAF

QVac_Eng

RexResearch

Science Hobbyist

Tom Bearden's Page

Unlimited electric energy

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
Alternative Energy News
KeelyNet_News
NextEnergyNews
PESWiki/News
NE Discussion Groups
Energetic Forum
Energy2000
Free_Energy
Greenglow
JLNLabs
KeelyNet
NuEnergy
OverUnity
Sarfatti_Physics
Sweet-VTA
Tapten
Tomorrow-energy
Vortex
Magazine Sites
Distributed Energy
Electrifying Times
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine
radioioAmbient

New aluminum-rich alloy produces hydrogen on-demand for large-scale uses
Posted on Tuesday, February 19, 2008 @ 22:58:45 EST by vlad

Science Purdue University engineers have developed a new aluminum-rich alloy that produces hydrogen by splitting water and is economically competitive with conventional fuels for transportation and power generation.

"We now have an economically viable process for producing hydrogen on-demand for vehicles, electrical generating stations and other applications," said Jerry Woodall, a distinguished professor of electrical and computer engineering at Purdue who invented the process.


The new alloy contains 95 percent aluminum and 5 percent of an alloy that is made of the metals gallium, indium and tin. Because the new alloy contains significantly less of the more expensive gallium than previous forms of the alloy, hydrogen can be produced less expensively, he said.

When immersed in water, the alloy splits water molecules into hydrogen and oxygen, which immediately reacts with the aluminum to produce aluminum oxide, also called alumina, which can be recycled back into aluminum. Recycling aluminum from nearly pure alumina is less expensive than mining the aluminum-containing ore bauxite, making the technology more competitive with other forms of energy production, Woodall said.

"After recycling both the aluminum oxide back to aluminum and the inert gallium-indium-tin alloy only 60 times, the cost of producing energy both as hydrogen and heat using the technology would be reduced to 10 cents per kilowatt hour, making it competitive with other energy technologies," Woodall said.

The researchers will present findings about the new alloy on Feb. 26 during the conference Materials Innovations in an Emerging Hydrogen Economy, which runs Feb. 24-27 in Cocoa Beach, Fla..

A key to developing the alloy for large-scale technologies is controlling the microscopic structure of the solid aluminum and the gallium-indium-tin alloy mixture.

"This is because the mixture tends to resist forming entirely as a homogeneous solid due to the different crystal structures of the elements in the alloy and the low melting point of the gallium-indium-tin alloy," Woodall said.

The alloy is said to have two phases because it contains abrupt changes in composition from one constituent to another.

"I can form a one-phase melt of liquid aluminum and the gallium-indium-tin alloy by heating it. But when I cool it down, most of the gallium-indium-tin alloy is not homogeneously incorporated into the solid aluminum, but remains a separate phase of liquid," Woodall said. "The constituents separate into two phases just like ice and liquid water."

The two-phase composition seems to be critical for the technology to work because it enables the aluminum alloy to react with water and produce hydrogen.

The researchers had earlier discovered that slow-cooling and fast-cooling the new 95/5 aluminum alloy produced drastically different versions. The fast-cooled alloy contained aluminum and the gallium-indium-tin alloy apparently as a single phase. In order for it to produce hydrogen, it had to be in contact with a puddle of the liquid gallium-indium-tin alloy.

"That was a very exciting finding because it showed that the alloy would react with water at room temperature to produce hydrogen until all of the aluminum was used up," Woodall said.

The engineers were surprised to learn late last year, however, that slow-cooling formed a two-phase solid alloy, meaning solid pieces of the 95/5 aluminum alloy react with water to produce hydrogen, eliminating the need for the liquid gallium-indium-tin alloy.

"That was a fantastic discovery," Woodall said. "What used to be a curiosity is now a real alternative energy technology."

The research is partially funded by Purdue's Energy Center at the university's Discovery Park.

"This technology has exciting potential, and I hope that it receives a fair and detailed evaluation and consideration from the scientific, government and business communities," said Jay Gore, the Vincent P. Reilly Professor of Mechanical Engineering and interim director of the Energy Center.

The slow-cooling technique made it possible to create forms of the alloy containing higher concentrations of aluminum.

The Purdue researchers are developing a method to create briquettes of the alloy that could be placed in a tank to react with water and produce hydrogen on-demand. Such a technology would eliminate the need to store and transport hydrogen, two potential stumbling blocks in developing a hydrogen economy, Woodall said.

The gallium-indium-tin alloy component is inert, which means it can be recovered and reused at an efficiency approaching 100 percent, he said

"The aluminum oxide is recycled back into aluminum using the currently preferred industrial process called the Hall-Héroult process, which produces one-third as much carbon dioxide as combusting gasoline in an engine," Woodall said.

The aluminum splits water by reacting with the oxygen atoms in water molecules, liberating hydrogen in the process. The gallium-indium-tin alloy is a critical component because it hinders the formation of a "passivating" aluminum oxide skin normally created on pure aluminum's surface after bonding with oxygen, a process called oxidation. This skin usually acts as a barrier and prevents oxygen from reacting with bulk aluminum. Reducing the skin's protective properties allows the reaction to continue until all of the aluminum is used to generate hydrogen, Woodall said.

"This skin is like an eggshell," he said. "Think of trying to fry an egg without breaking the shell."

The researchers developed the new alloy in late 2007 and are reporting about it for the first time during the conference.

"We now have a simple process for making 95/5, and we know the process splits water and produces hydrogen until all of the aluminum alloy is used up," Woodall said.

For the technology to be used in major applications such as cars and trucks or for power plants, however, a large-scale recycling program would be required to turn the alumina back into aluminum and to recover the gallium-indium-tin alloy. Other infrastructure components, such as those related to manufacturing and the supply chain, also would have to be developed, he said.

"So the economic risk is large, but the potential payoff is also large," said Woodall, who received the 2001 National Medal of Technology, the nation's highest award for technological achievement.

Aluminum, the most abundant metal on earth, is refined from the raw mineral bauxite, which also contains gallium.

Future research will include work to learn more about the chemical mechanisms behind the process and the microscopic structure of the alloy.

Source: Purdue University
Via: http://www.physorg.com/news122655117.html

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 4.5
Votes: 2


Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"New aluminum-rich alloy produces hydrogen on-demand for large-scale uses" | Login/Create an Account | 2 comments | Search Discussion
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

Re: New aluminum-rich alloy produces hydrogen on-demand for large-scale uses (Score: 1)
by Light1 on Wednesday, February 20, 2008 @ 13:32:26 EST
(User Info | Send a Message)
The Purdue group appear to be unaware of the ongoing work by Alternate Energy Corp. of Burlington, Ontario, CN, aka CleanWatts (see http://www.cleanwatts.com/ [www.cleanwatts.com]).  Same technology, e.g., on-demand hydrogen evolution from a proprietary metal/catalyst system.  AEC did a proof-of-concept demonstration with a hydrogen-powered golf cart several years ago.

The precedent for these kinds of hydrogen-evolving metal catalyst systems is a material called "Chemalloy."  See U.S. patents no. 2,796,345 and 2.927,856 issued to Samuel Freedman in 1957 and assigned to Chemally Electronics Corp.  Would recommend that the Purdue researchers do a Google search on Chemalloy.



Closing the hydrogen economic loop (Score: 1)
by vlad on Tuesday, July 22, 2008 @ 00:34:04 EDT
(User Info | Send a Message) http://www.zpenergy.com
The inventor of the nickel metal hydride (NiMH) technology used for building batteries for countless portable electronic gadgets and now hybrid gas-electric cars believes the hydrogen economy is already upon us.

In a paper published in the current issue of the International Journal of Nuclear Hydrogen Production and Applications, Stanford Ovshinsky, Chairman and CEO of Ovshinsky Innovation LLC, based in Bloomfield Hills, Michigan, explains that we already have the means for making the hydrogen economy realistic.
...
More: http://www.physorg.com/news135848971.html [www.physorg.com]




 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.