ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 186 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events
  • (August 7, 2024 - August 11, 2024) 2024 ExtraOrdinary Technology Conference

  • Hot Links
    Aetherometry

    American Antigravity

    Closeminded Science

    EarthTech

    ECW E-Cat World

    Innoplaza

    Integrity Research Institute

    New Energy Movement

    New Energy Times

    Panacea-BOCAF

    RexResearch

    Science Hobbyist

    T. Bearden Mirror Site

    USPTO

    Want to Know

    Other Info-Sources
    NE News Sites
    AER_Network
    E-Cat World
    NexusNewsfeed ZPE
    NE Discussion Groups
    Energetic Forum
    EMediaPress
    Energy Science Forum
    Free_Energy FB Group
    The KeelyNet Blog
    OverUnity Research
    Sarfatti_Physics
    Tesla Science Foundation (FB)
    Vortex (old Interact)
    Magazine Sites
    Electrifying Times (FB)
    ExtraOrdinary Technology
    IE Magazine
    New Energy Times

    Interesting Links

    Click Here for the DISCLOSURE PROJECT
    SciTech Daily Review
    NEXUS Magazine

    Squeezed crystals deliver more volts per jolt
    Posted on Wednesday, January 30, 2008 @ 22:46:08 GMT by vlad

    Science A discovery by scientists at the Carnegie Institution has opened the door to a new generation of piezoelectric materials that can convert mechanical strain into electricity and vice versa, potentially cutting costs and boosting performance in myriad applications ranging from medical diagnostics to green energy technologies.

    High-performance piezoelectric materials used today, such as those in probes for medical ultrasound, are specially grown crystals of mixed composition known as “solid solutions,” making them difficult to study and expensive to manufacture. But in the January 31 Nature a research team led by Ronald Cohen and Russell Hemley of the Carnegie Institution’s Geophysical Laboratory report that at high pressure pure crystals of lead titanate show the same transitions seen in more complex materials.

    Moreover, theory predicts that lead titanate under pressure has the largest piezoelectric response of any material known. This suggests the exciting possibility of low-cost but extremely high-performance piezoelectrics.

    “The most useful piezoelectric materials have a critical range of compositions called the morphotopic phase boundary, where the crystal structure changes and the piezoelectric properties are maximal,” says Muhtar Ahart, a co-author of the study. “These are usually complex, engineered, solid solutions. But we showed that a pure compound can display a morphotopic phase boundary under pressure.”

    For the study, the researchers placed powdered crystals of lead titanate in a device called a diamond anvil cell, which can generate pressures exceeding those at the center of the Earth. They monitored the changes in crystal structure with pressure using high-energy X-ray beams of the Advanced Photon Source at Argonne National Laboratory in Illinois. Using this data and calculations based on first-principle theoretical computations, the researchers were able to determine the piezoelectric properties of the pure crystals at different pressures.

    “It turns out that complex microstructures or compositions are not necessary to obtain strong piezoelectricity,” says Ahart.

    The use of piezoelectrics has boomed in recent years and is rapidly expanding. Their ability to convert mechanical energy to electric energy and vice versa has made them invaluable for acoustic transducers for sonar and medical ultrasound, and for tiny, high-precision pumps and motors for medical and other applications. High-performance piezoelectrics have also opened up new possibilities for “energy harvesting,” using ambient motion and vibration to generate electricity where batteries or other power sources are impractical or unavailable.

    “This is a field in which theory, experiment, and material development work side-by-side,” says Ronald Cohen, a staff scientist at the Carnegie Institution and a co-author of the study. “Delineating the underlying physics of piezoelectric materials will make it easier to develop new materials and improve existing ones. We’re now poised on the edge of hugely expanded applications of these technologies.”

    Source: Carnegie Institution
    Via: http://www.physorg.com/news120921069.html

     
    Login
    Nickname

    Password

    Security Code: Security Code
    Type Security Code

    Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

    Related Links
    · More about Science
    · News by vlad


    Most read story about Science:
    100 miles on 4 ounces of water?


    Article Rating
    Average Score: 0
    Votes: 0

    Please take a second and vote for this article:

    Excellent
    Very Good
    Good
    Regular
    Bad


    Options

     Printer Friendly Printer Friendly


    "Squeezed crystals deliver more volts per jolt" | Login/Create an Account | 0 comments
    The comments are owned by the poster. We aren't responsible for their content.

    No Comments Allowed for Anonymous, please register

     

    All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
    Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

    PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.