ZPE_Logo
  
Search        
  Create an account Home  ·  Topics  ·  Downloads  ·  Your Account  ·  Submit News  ·  Top 10  
Mission Statement

Modules
· Home
· Forum
· LATEST COMMENTS
· Special Sections
· SUPPORT ZPEnergy
· Advertising
· AvantGo
· Books
· Downloads
· Events
· Feedback
· Link to us
· Private Messages
· Search
· Stories Archive
· Submit News
· Surveys
· Top 10
· Topics
· Web Links
· Your Account

Who's Online
There are currently, 240 guest(s) and 0 member(s) that are online.

You are Anonymous user. You can register for free by clicking here

Events

Hot Links
Aetherometry

American Antigravity

Closeminded Science

EarthTech

ECW E-Cat World

Innoplaza

Integrity Research Institute

New Energy Movement

New Energy Times

Panacea-BOCAF

RexResearch

Science Hobbyist

T. Bearden Mirror Site

USPTO

Want to Know

Other Info-Sources
NE News Sites
AER_Network
E-Cat World
NexusNewsfeed ZPE
NE Discussion Groups
Energetic Forum
EMediaPress
Energy Science Forum
Free_Energy FB Group
The KeelyNet Blog
OverUnity Research
Sarfatti_Physics
Tesla Science Foundation (FB)
Vortex (old Interact)
Magazine Sites
Electrifying Times (FB)
ExtraOrdinary Technology
IE Magazine
New Energy Times

Interesting Links

Click Here for the DISCLOSURE PROJECT
SciTech Daily Review
NEXUS Magazine

Using a magnet to tune a magnet
Posted on Thursday, August 02, 2007 @ 20:53:53 UTC by vlad

Science Domain wall pattern for a ferromagnet. The technical use of the magnet is determined by the ease with which the walls can be moved, or equivalently, by the force with which they are pinned. Strong pinning gives a hard magnet, soft pinning a soft magnet. The distance between the walls is 100 nanometers or 10 millionths of a centimeter. Credit: Y-A. Soh and G. Aeppli

An international research team, led by scientists at the London Centre for Nanotechnology (LCN), has found a way to switch a material’s magnetic properties from ‘hard’ to ‘soft’ and back again – something which could lead to new ways of controlling electromagnetic devices.


The research will appear in the journal Nature on August 2nd and shows how a magnet can be ‘tuned’ by subjecting it to a second magnetic field, perpendicular to the original.

Magnets can be classified by their ‘hard’ or ‘soft’ magnetic properties. Hard magnets, sometimes called ‘permanent’ magnets, have fixed or ‘pinned’ domain walls which mean the material stays magnetised for a long time. Soft magnets have moveable domain walls that can be easily flipped. These materials exhibit impermanent magnetic properties.

Professor Gabriel Aeppli, Director of the LCN and a senior member of the research team, explained the significance of the research: “Whether a magnet is hard or soft determines what you can use it for. Typically, you would use a permanent magnet to fix a note to the door of your refrigerator because you want it to stay there for a long time. On the other hand, you might use a soft magnet in a motor or transformer because it would be better at adapting to the rapid changes in alternating current and would dissipate much less energy than a hard magnet.

“It is very rare to be able to continuously tune wall pinning in a magnet but we have now shown how it can be done in a model magnet at a low temperature. In the process, we demonstrate a new route to applications of magnets at higher temperatures and show how chemical disorder at the nanometre (one billionth of a meter) scale can have a huge effect on the properties of a macroscopic (centimetre scale) magnet.”

Most physical and biological systems can be thought of as disordered. Semiconductors rely on randomly placed impurities for their electrical properties and uses, while the chemical and structural impurities in magnets determine the domain wall pinning and therefore how easily their polarity can be changed.

“From a theoretical point of view, it’s been really interesting for us to see the properties of a large, disordered system being dominated to such an extent by a rare configuration of impurities,” says Professor Aeppli. “Unlike biological systems, in materials science we are used to seeing behaviour which is dominated by the average characteristics of the system. Here we can observe the massive influence of a miniscule number of chemical and structural defects.”

Source: University College London
Via: http://www.physorg.com/news105193245.html

 
Login
Nickname

Password

Security Code: Security Code
Type Security Code

Don't have an account yet? You can create one. As a registered user you have some advantages like theme manager, comments configuration and post comments with your name.

Related Links
· More about Science
· News by vlad


Most read story about Science:
100 miles on 4 ounces of water?


Article Rating
Average Score: 0
Votes: 0

Please take a second and vote for this article:

Excellent
Very Good
Good
Regular
Bad


Options

 Printer Friendly Printer Friendly


"Using a magnet to tune a magnet" | Login/Create an Account | 1 comment | Search Discussion
The comments are owned by the poster. We aren't responsible for their content.

No Comments Allowed for Anonymous, please register

CHANGING THE RINGS: A KEY FINDING FOR MAGNETICS DESIGN (Score: 1)
by vlad on Friday, August 03, 2007 @ 21:59:51 UTC
(User Info | Send a Message) http://www.zpenergy.com
CHANGING THE RINGS: A KEY FINDING FOR MAGNETICS DESIGN, August 03
Researchers at the National Institute of Standards and Technology's Center for Nanoscale Science and Technology have done the first theoretical determination of the dominant damping mechanism that settles down excited magnetic states-"ringing" in physics parlance-in some key metals.
Full story at http://www.physorg.com/news105365699.html [www.physorg.com]




 

All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2002-2016 by ZPEnergy. Disclaimer: No content, on or affiliated with ZPEnergy should be construed as or relied upon as investment advice. While every effort is made to ensure that the information contained on ZPEnergy is correct, the operators of ZPEnergy make no warranties as to its accuracy. In all respects visitors should seek independent verification and investment advice.
Keywords: ZPE, ZPF, Zero Point Energy, Zero Point Fluctuations, ZPEnergy, New Energy Technology, Small Scale Implementation, Energy Storage Technology, Space-Energy, Space Energy, Natural Potential, Investors, Investing, Vacuum Energy, Electromagnetic, Over Unity, Overunity, Over-Unity, Free Energy, Free-Energy, Ether, Aether, Cold Fusion, Cold-Fusion, Fuel Cell, Quantum Mechanics, Van der Waals, Casimir, Advanced Physics, Vibrations, Advanced Energy Conversion, Rotational Magnetics, Vortex Mechanics, Rotational Electromagnetics, Earth Electromagnetics, Gyroscopes, Gyroscopic Effects

PHP-Nuke Copyright © 2005 by Francisco Burzi. This is free software, and you may redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see the license.