

CSIRO Energy Storage Projects:

David Lamb Low Emission Transport Theme Leader

Energy Storage for Transport

Three projects

Safe, High-Performance Lithium-Metal Batteries

Supercapacitors

Ultrabattery

10 years ago we built two hybrid cars....

In partnership with Holden we built the ECOmmodore, a parallel hybrid vehicle.

With aXcess Australia, a series hybrid vehicle.

But with oil at \$20/bbl, the technologies were not competitive

The energy storage system:

60 volt battery pack (VRLA, twin tab)

150 volt Supercapacitor

Sufficient power for good acceleration
Sufficient energy for ~15 km electric range

CSIRO Ultrabattery

longer life and low cost. It can be made in a conventional battery factory

Project 1. Li-Metal batteries

Safe, High-Performance Lithium-Metal Batteries

Li-ion powered t-zero

- 0 60 mph in 3.6s
- 300 mi range (@ 65 mph)

part of Li-ion battery pack: 7000 18650 cells!

Safe Rechargeable Lithium-Metal Battery

- Long-standing industry goal has been to replace the carbon-based anode with metallic lithium
 - access 10-fold increase in electrode specific energy
 - device specific energy ↑ by 25%
 - targeting 200 Wh kg⁻¹ (depending on cathode material)

made possible by Room-Temperature Ionic Liquid Electrolyte

Why do we use ionic liquids?

- because in conventional electrolytes, the lithium electrode is not able to form a stable interphase at the electrode-electrolyte boundary....
-with the result that dendrites grow -> short circuits

100 cycles

250 cycles

500 cycles

Project 2: Supercapacitors

High Energy Supercapacitors

Advantages

- √high power density (>>2kW/kg)
- ✓ rapid charge/recharge (Seconds)
- ✓ environmentally friendly (well, not harmful!)
- ✓ energy storage, not conversion
- ✓ almost unlimited change/discharge cycles (*millions of cycles*)
- ✓ No maintenance

Current Limitations

- ★ low energy density (~5Wh/kg) relative to batteries.
- voltage drops with energy use (can be accommodated)

Carbon Supercapacitor (symmetric)

Both electrodes charged and discharged by *reversible adsorption/desorption* of ions

$$1/C_{T} = 1/C_{1} + 1/C_{2}$$

if C1 = C2, then

$$C_T = \frac{1}{2} \cdot C_2$$

$$(Energy = \frac{1}{C}V^2)$$

Typically ~5 Wh/kg

New Asymmetric Supercapacitor

Asymmetric has twice the capacitance of symmetric capacitors

Energy vs. Power

CSIRO Ni(OH)₂/C Asymmetric Supercapacitors

- Performance to date

Prototype	Capacitance	Energy	Max. Power	ESR	Cycle
	[Farads]	Wh/kg	W/kg	$[m.\Omega]$	Efficiency
06-01 (45 mL)	1980	12.1	4430	2.3	0.99
06-02 (45 mL)	2250	5.8	1670	3.5	0.99
06-03 (90 mL)	1770	5.1	1540	2.3	0.99
06-04 (90 mL)	4740	7.8	1410	2.9	0.96
06-05 (90 mL)	8540	14.8	2740	1.0	0.99

Project 3: Ultrabattery

Low cost vs high tech batteries

Absorbs energy quicker, lasts longer, suitable for hybrids

Configuration of UltraBattery

UltraBattery combines an asymmetric capacitor and a lead-acid battery in one unit cell, without extra electronic control.

Project 3 - Ultrabattery

Laboratory evaluation

 Ultrabattery meets or exceeds the targets of power, available energy, cold cranking and self discharge set by the US FreedomCar for both minimum and maximum power-assist HEV systems

Cycling performance of UltraBattery is significantly longer than that of the state-of-the art lead-acid batteries and, more importantly, is proven to be comparable or even better than that of the Ni-MH cells used in

Honda Insight HEV

Field trial at Millbrook, UK

In durability trials the UltraBattery pack achieved 100 000 miles and the battery pack is still in a strong and healthy condition.

Replacement of Ni-MH pack with UltraBattery Pack

Ni-MH pack

UltraBattery pack

Fuel, emissions and cost comparison

	Fuel consumption L/100km	CO ² Emissions g/km	Battery cost \$US
Ni-MH	4.05	96	\$1500 to \$2500
Ultrabattery	4.16	98.8	\$350 to \$400

The long service-life and reduced cost of the UltraBattery will promote the 'uptake rate' of HEVs.

lam124 1 Lamb, David (ET F/ship, Clayton), 13/05/2008

Ultrabattery: features and benefits

- Greater power
- Significant improvement in service-life
- Able to produce in smaller sizes, with sufficient power to drive the bigger engine capacity in conventional automobiles
- Applicable to a wide range of HEVs with greatly reduced cost compared with existing nickel/nickelmetal hydride technology
- Reconfigurable for a variety of applications (i.e., power tool, high-power UPS and renewable energy)
- > Low cost

Power characteristics of different energy-storage devices

lam124 2 Lamb, David (ET F/ship, Clayton), 13/05/2008