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Extracting energy and heat from the vacuum
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Relatively recent proposals have been made in the literature for extracting energy and heat from elec-
tromagnetic zero-point radiation via the use of the Casimir force. The basic thermodynamics involved
in these proposals is analyzed and clarified here, with the conclusion that, yes, in principle, these propo-
sals are correct. Technological considerations for actual application and use are not examined here,

however.
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Nearly a decade ago Forward [1] raised the possibility
of extracting energy from the electromagnetic zero-point
(ZP) fields that are predicted by quantum electrodynam-
ics to be present in all of space. He described a means of
accomplishing this task via a mechanical device consist-
ing of a charged foliated conductor. By using the attrac-
tive Casimir force between metal layers to overcome a
repulsive electrostatic force, the foliated conductor can
be greatly compressed, thereby storing charge at a high
electrostatic potential energy.

More recently, one of us (Puthoff) has again raised the
possibility of energy extraction from the vacuum [2],
while also emphasizing that the energy density of the
electromagnetic ZP energy has conservatively been es-
timated to be equal to or greater than nuclear energy den-
sities [3]. Puthoff suggested a potentially more practical
and plentiful means for energy extraction, namely, a
method involving a charged plasma. His discussion in-
cluded the idea of generating heat from the vacuum.

Here we do not comment further on devising practical
methods for enabling the vacuum to become a viable,
economical alternative to more conventional sources of
energy, except to say that, without a doubt, considerable
technological effort might need to be expended to ade-
quately harness such energy. Instead, here we will con-
centrate on the issue of whether fundamental thermo-
dynamic laws are being violated in even considering this
possible source of energy. In particular, certainly the
“vacuum” should be considered to be a state of thermal
equilibrium at the temperature of T=0. How then can
energy be extracted, and even heat generated, at T =0?

Some relatively recent articles by one of us (Cole) pro-
vide a starting point for this discussion. These articles
analyze the thermodynamics of quasistatic displacement
operations on fluctuating electric dipole harmonic oscilla-
tors [4-7] and on conducting parallel plates [8]. The
operations involve, respectively, the microscopic van der
Waals force between atomic systems, and the macroscop-
ic Casimir force between parallel plates. Due to the fun-
damental thermodynamic definition of T =0, no heat
flow should occur at T =0 during quasistatic displace-
ments of these systems. Indeed, for these two systems, as
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treated via classical physics, only one electromagnetic
thermal radiation spectrum was found to ensure that no
heat would flow: namely, the classical electromagnetic
ZP radiation spectrum, which has the same spectral form
as the ZP spectrum predicted to exist via QED. The ex-
istence of this radiation results in van der Waals and
Casimir forces at T =0, thereby yielding a tight connec-
tion between the required spectrum and the resulting
forces.

At first thought, a contradiction appears inevitable be-
tween the analysis yielding “no heat flow at T'=0" and
“heat extraction at T =0.” However, the contradiction
becomes resolved upon recognizing that two different
types of thermodynamic operations are being discussed.
The quasistatic operations are thermodynamically rever-
sible, so here no heat flow occurs at 7=0. In contrast,
the heat generation process discussed in Ref. [2] is ther-
modynamically irreversible, so heat can be produced,
even when the initial temperature is 7" =0.

The following analysis will cover both the 7=0 and
T+0 cases. Indeed, although the proposals in Refs. [1,2]
discussed only the very idealized T =0 case, they can be
shown to be valid also at T+#0. Our analysis will use
classical physics arguments, as in Refs. [4-8].

The mechanism for heat generation is illustrated in the
following thought experiment, which clearly is an im-
practical process, yet it embodies the necessary points.
Suppose there exists a large number of uncharged paraliel
plate capacitors. The plates of each capacitor will be at-
tracted to each other by the fluctuating, yet correlated,
induced charge distributions in each plate, that arise on
account of the fluctuating ZP plus thermal radiation
fields. If each pair of plates is allowed to collide, some of
the kinetic energy generated will be converted into heat.
Collecting the useable portion of the heat, discarding
each pair of plates, and then colliding the next set, in
turn, thus yields a means for heat generation. The “fuel”
here is the supply of capacitors; the used up capacitors
are analogous to the exhaust from gasoline engines or the
“waste” from nuclear fuel.

To analyze this process more deeply, the physical
description of colliding systems needs to be addressed. In
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particular, whether we consider macroscopic materials
attracted via Casimir forces, or individual atoms attract-
ed together via van der Waals forces, other interatomic
interactions need to be considered when the systems
come very close to each other. To avoid such complica-
tions, let us consider only the situation where, for exam-
ple, two plates, or two atoms, are initially held apart,
then released, and then “grabbed” or blocked by an
external force or medium, before the systems collide.

Upon releasing the two attractive systems, they will
move toward each other, thereby acquiring kinetic ener-
gy. If we then seize them with probes in such a way that
the probes should move, or if a material “stop” placed in
the path of the system is displaced somewhat, then work
will be done upon the probe or stop. Likewise, when
making the quasistatic displacements in Refs. [4-8],
work could be done on the probes by the displaced sys-
tems by making the displacements along the directions of
the van der Waals or Casimir forces. In this way, energy
is “extracted” by having such systems perform work.

However, heat extraction is quite different than energy
extraction, where by energy extraction we henceforth
specifically mean the act of having systems perform posi-
tive work. During reversible operations, such as are dis-
cussed in Refs. [4-8], work will, in general, either be
done by or on these systems. However, only for T50
can heat also be generated during these displacements,
where heat, here, consists of energy in the form of elec-
tromagnetic radiation that flows from the region sur-
rounding the system in question.

In contrast, for irreversible operations, heat will in gen-
eral be produced. Upon releasing two plates or particles
and then stopping them before they collide, not all of the
kinetic energy will typically be transformed into work
done upon the material stops. Indeed, in the case of a hy-
pothetical infinitely massive stop, no work will be done.
Instead, kinetic energy must be converted into elec-
tromagnetic radiation energy. The emitted radiation, or
perhaps more appropriately, the radiation that results
after interacting with randomizing entities, such as an
idealized carbon particle [9,8], would then constitute the
heat that flows from the system. In an open system this
energy will radiate away and the final state of the system
would be the same as if we quasistatically brought the
particles together, where work is now done in displacing
the material stops that hold the particles.

To show that there are no contradictions with these
ideas, we next compare two related thought experiments
consisting of an irreversible and a reversible operation, as
indicated in Figs. 1(a) and 1(b), respectively. The small
darkened circles labeled X and Y represent systems that
might be neutral conducting plates, dipole oscillator par-
ticles, or other more complicated systems attracted to-
gether due to van der Waals forces. The rectangles with
crosshatched lines represent material stops used to hold
the systems in place. In Fig. 1(a), three stops labeled 4,
B, and C are displayed, while in Fig. 1(b), only two stops
A and C are shown. The left and right sides of both
figures represent the initial time ¢; and final time ?;, re-
spectively, of the two operations to be discussed.

Starting with Fig. 1(a), let stop A4 be slightly displaced
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FIG. 1. Examples of an irreversible (a) and a reversible (b)
thermodynamic operation on systems X and Y, that are attract-
ed toward each other. (a) The blocks or stops indicated by A4,
B, and C hold X and Y in place at the initial and final times ¢
and ¢;. Between these times, stop A is slid to the left, so that X
freely accelerates and moves toward Y until hitting and sticking
onto stop B. (b) Here a closely related reversible thermodynam-
ic operation is carried out. System X is quasistatistically dis-
placed by slowly moving stop 4 toward stop C, so that
configuration work is done by X and Y on the material stops
holding them.

to the left, so that the system is no longer in mechanical
equilibrium. A negligible amount of work can be as-
sumed to be done when making this displacement. Subse-
quently, X will accelerate toward Y and increase its kinet-
ic energy until it hits B. If stop B is not displaced much,
or more precisely if f 2’ Fy(t)-vg(t)dt is small, where

F3(1) is the force from X acting on stop B at time ¢, and
vp(t) is the velocity of stop B at time ¢, then most of the
kinetic energy of the system will be converted into elec-
tromagnetic energy. If we assume that the box drawn
around the system represents a perfectly conducting con-
tainer that acts to retain all radiation, then this elec-
tromagnetic energy cannot escape. Imagining that a
small, idealized carbon particle is introduced into the sys-
tem, then the character of the radiation will again return
to a thermal radiation form. The temperature of the sys-
tem must therefore increase as a result of this sequence.

If we now carry out a reversible operation in Fig. 1(b)
by quasistatically displacing stop A4, then systems X and
Y arrive in the same positions as in Fig. 1(a). Here, how-
ever, compression or configuration work was done
against the structure holding X in place; i.e., the structur-
al form of the ‘“retaining walls” has changed. In Fig.
1(a), no configuration work was done; the retaining struc-
ture remained essentially the same between times ¢; and
tr, except for the infinitesimal displacement of stop 4 to
the left.

To now make the state of the system in Fig. 1(b) the
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same as the state of the system in Fig. 1(a), the tempera-
ture in Fig. 1(b) must be increased. This operation can be
done reversibly via sequentially contacting the system
with a series of heat reservoirs with infinitesimally in-
creasing temperatures. In this way also, the example in
Fig. 1(b) can be used to calculate the net change in entro-
py for the irreversible process in Fig. 1(a). This change
can be found by adding up dQ /T over all the infinite con-
tact operations, where here dQ is a positive heat flow into
the box in Fig. 1(b). Since the entropy of the region out-
side the containing box in Fig. 1(a) does not change, the
net entropy change in the universe for the irreversible
operation in Fig. 1(a) is therefore positive, in agreement
with the second law of thermodynamics.

Figure 2 provides additional insight. The crosshatched
lines from states a to c represent the irreversible, adiabat-
ic, free contraction indicated in Fig. 1(a), while the dark
line from a to b represents the reversible, adiabatic con-
traction in Fig. 1(b). To make the two operations end at
the same state, namely ¢, the system in Fig. 1(b) must be
reversibly heated, as indicated by the b —c¢ operation in
Fig. 2. We note that if the contraction operation of a —b
is carried out at T =0, then in Fig. 2(c) the a —b opera-
tion would lie at the single point where the R; and R,
curves come together at T =0, due to the third law of
thermodynamics [4,5,8]. Likewise the path ¢ —b in Fig.
2(b) should become a vertical line at T =0, as will be seen
shortly in a specific example.

Since the specific shapes of the curves in Fig. 2 depend
on the system being analyzed, here we briefly sketch how
these curves could be found for a system that can be ana-
lyzed in some detail. Consider two dipole harmonic os-
cillators in a conducting box of volume <V, where the os-
cillators are separated by a distance R that is sufficiently
small that the unretarded van der Waals interaction is
dominant. Hence, the expressions in Ref. [6] apply:

U =3, mh¥® 4;, T)+0'T*V+C , (1)
A’j
B, A ® ,;,T)
w=3 f~ AhndCT’Ajﬂz““—‘—Al s ()
A7 B4t D 4;
where
hz(w,T)=@ —1-+—1— (3)

a |2 explfiw/kT)—1

holds for thermal radiation at temperature T, Uy, is the
internal energy in the box, and W is the work done in
displacing the dipole particles. Included in Uj, is the
internal energy in Eq. (22) in Ref. [6] for the dipole
oscillators, plus the thermal radiation energy,
Ugpm,in = (o' T*V)+C, from Eq. (40) in Ref. [5], where C
is a constant and the box dimensions are assumed to be
large compared to the distance separating the oscillators.
Otherwise, the notation in Ref. [6] applies. Six resonant
frequencies & ,; that are each a function of R must be
taken into account. The thermodynamic state of this
two-particle system is thus specified by only R and T. To
simplify the expressions further, if we assume the oscilla-
tors are separated along the x direction and are con-

strained so that oscillations occur only along the y direc-
tion, then only two resonant frequencies & ,; exist, name-
ly, [w3te?/(mR?3)]'/%, where w, is the natural resonant
frequency of the oscillating particle’s motion, and e and
m are the charge and mass, respectively, of this same par-
ticle.

Knowing R,, T,, and R, then T, can be found by con-
sidering the irreversible adiabatic free contraction and
applying, conservation of energy: Uy, (R,,T,)
=U,(R.,T,). To find T,, with R,=R_, we can start
from state @ and follow the adiabatic reversible path
a—b by demanding that dU,,(R,T)=(dW/dR)dR

<F> @

adiabatic

v d (b)

int

T

FIG. 2. (a) Plot of externally applied force { F) used to keep
apart two systems that attract each other, vs R, the distance be-
tween the systems. A thermodynamic reversible set of opera-
tions is indicated by the dark lines with arrows, where a —b
represents an adiabatic contraction from separation R; to R,
b—>c indicates a reversible heating, ¢ —d is an adiabatic expan-
sion from R, to R;, and d—a is a reversible cooling. The
crosshatched lines indicate an irreversible, adiabatic, free con-
traction from a to c. (b) Plot of internal energy U, vs tempera-
ture T for the same operations indicated in (a). (¢) Correspond-
ing plot of caloric entropy S vs T.
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along each infinitesimal part of the path. One obtains

da 4
dR
4 , 4 oh?

—o'TV+ 3 <
SoOTV+3 S

2 2
_3m |
W, By

WJ

dT=dR 2 - (4)

which can then be integrated to find T,. As anticipated
from Refs. [4] and [6], if T=0 at a, then dT =0 from
Eqgs. (3) and (4) for any piece of this path from a—b,
thereby resulting in the a —b path in Fig. 2(b) becoming
a vertical line at T =0. Finally, T, can be found by start-
ing from T, and integrating along the reversible, adiabat-
ic path from ¢—d. The paths b—c and d —a in Fig.
2(b) can be obtained directly from Eq. (1) by holding o j
fixed while varying T.

As a side comment, we note that a simple thermo-

dynamic system illustrating some of the above properties
consists of two nonfluctuating charges ¢ and —gq in a
large conducting box containing thermal radiation.
Here, Uy ~—q*/R+0o'T*V+C. In Fig. 2(a), the two
adiabatic curves would lie on top of each other, since the
electrostatic force does not depend on temperature. The
curves a—b and ¢—d would become vertical lines in
Fig. 2(b), and the R; and R curves in Fig. 2(c) would lie
on top of each other, since S=40'T3V +S,,.

In conclusion, our analysis yields nothing strange
about having the systems discussed above either generate
heat or perform work, such as configuration work. For
heat to be generated at T =0, an irreversible thermo-
dynamic operation needs to occur, such as by taking the
systems out of mechanical equilibrium. When T50, heat
can in general be generated for both reversible, nonadia-
batic operations, as well as irreversible operations. As for
a practical method of energy or heat extraction, this arti-
cle does not address that question.
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